Geometry Control Method of Lusail CP3A Bridge

Civil Engineering Center Dr. Hiroshi TANAKA

Contents

Geometry Control ?

• Shape bridge up within geometry allowance of Lusail CP3A

- Hanger Tension Force : Error < 10%

Very Hard to realize !!

Konohana Bridge

Self Anchored Suspension Bridge with Inclined hangers

Located in Osaka Japan, 1986

General View of Konohana Bridge

Bents Removal

Hanger Anchor Part

CONNECTION OF HANGERS (INTRODUCTION OF TENSILE FORCE)

Cable Tension Adjustment Work at Site

Main Cable Installation

Temporary Bents

Hanger Installation

Installation of hanger cable in Br 8

Hanger System

[H1 type]

[H2 type]

Hanger Tension Adjustment System

Bolt Tensioner Fit up Test

Bolt Tensioner Fit up Test

New Tensioner Mock Up

New Tensioner Mock Up

Bents Removal

Br 8

Geometry Survey

Error Factors

Tolerance Suggestion Value (TSV)

= 1.2 X ($|\triangle HT|$ + $|\triangle SW|$ + $|\triangle CE|$ + $|\triangle CF|$ + $|\triangle CR|$) + $\triangle EC$

Hanger Force(△ _{HT})	Tolerance for hanger force is ±5% (by Particular Technical Specifications GQ626/PTS004/CP3A)
Girder Weight (△sw)	Tolerance for girder weight including slab weight is ±3% (determined by contractor)
Cable Elasticity(△ _{CE})	Tolerance for modulus of elasticity is 155,000 MPa ± 8,000 MPa (by Particular Technical Specifications)
Cable Fabrication (△ _{CF})	Tolerance for cable fabrication is $\triangle L0 = \pm (\sqrt{L0} + 5mm)$; L0 in m (by Particular Technical Specifications)
Cable Creep (△ _{CR})	0.30 mm/m ± 0.25 mm/m (by Bridon's experiment result)
Girder Pre-camber (△ _{EC})	Analysis Gap between GP626/9996/CP3A drawing pre-camber and independent Initial Shape Analysis

Applied Theory

- Fuzzy satisfaction concept
- Designer's satisfaction \rightarrow Maximum

Side Span of Lusail 3CPA Bridge 8

STEP	15	Descr	iption	After Bent Ren	noval								1 mar
Adju	usting Shim T	hickness [mm]	1		INPUT	[KN]				11 PA		生
	(+): Shim inst	ertation: (-)	Shim remo	val		Target		Allowar	ices	8		10	
Hanger No.	Mem.No.	Amount	Min.Shim	Max. Shim		(Design Value)	Survey	(-) %	(+) %			1	
1	2009	9	-100	100		1,707	1,507	-10	10	9	1		
2	2018	-6	-100	100		1,605	1,855	-10	10	1	- /	11	
3	2007	-8	-100	100		1,605	1,785	-10	10			16.	
4	2006	0	-100	100		1,605	1,745	-10	10			25	Sala.
5	2005	8	-100	100		1,615	1,645	-10	10	· · · ·		5	1-1-1-1
6	2004	-11	-100	100		1,615	1,815	-10	10	801		0.00	
7	2003	8	-100	100		1,625	1,585	-10	10				B-0-1
8	2002	-8	-100	100		1,648	1,848	-10	10	with	-		-
Shir	n Adjustment C	alculation		ן ב	_	Influence Unit:	10	nm]		Unit :[KN]		
-			influe	nce Matria					and the	Difference	Error	Limit	Trans Barrie
Hanger No.	1	2	3	4	5	6	7	8	Hanger	(survey-target)	Lower	Upper	Pical Kes
1	164 522	-62.039	-4,457	0	0	0	0	0		-200	-171	171	-9
2	-62.039	134.719	-56.635	-5.813	0	0	0	0	1	250	161	161	158
1	-4.457	-56.635	125.143	-50.607	-6.708	0	0	0		180	-161	161	101
4	0	-5.813	-50.607	116.332	-45.133	-7.296	0	0		140	-161	161	161
5	0	Û	-6.708	-45.133	108.224	-40.205	-7,684	0		30	-162	162	162
6	0	0	(-7,296	-40.205	100.729	-35.98	-8.511		200	-162	162	30
-	0	0		0	-7.684	-35.98	93.172	-34.311		-40	-163	163	99
7													

Center Span of Lusail 3CPA Bridge 8

[Lusal BR8 Center Span] Hanger Tepsion Adjustment by Fuzzy Satisfaction Concept - SHEET BY DR TANAKA -

After Bent Removal

SAMSUNG C&T

Adjusting Shim Thickness [mm] (+): Shim insertation; (-)Shim removal Hanger No. Mem.No. Amount Min.Shim Max. Shim 17 7102 23 -100100 7103 -10-100 100 18 -9 100 19 7104 -100 -5 100 20 7105 -1007106 2 -100100 21 -6 100 7107 22 -100 7108 4 -100 100 23 -12 -100 100 7109 24 --0 100 25 7110 ~100 7111 5 -100 100 26 6 27 7112 -100100 7113 16 -100100 28 0 -100100 7114 29 -6 100 -10030 7115 -7 -100 100 31 7116

Shim Adjustment Calculation

Description

15

STEP

INPUT	[KN]						Unit :[KN]		BON
Target		-	Allow	ances		Errortsurvey	Error	Final	
(Design Vak	Survey	(-) %	(+) %	(-) [KN]	(+)[KN]	-target)	Lower	Upper	Result
1,699	1,507	-10	10	-170	170	-192	-170	170	21.7
1,707	1,855	-10	10	-171	171	148	-171	133	17.0
1,707	1,785	-10	10	-171	171	78	-171	171	25.0
1,707	1,745	-10	10	-171	171	38	-171	171	16.7
1,707	1,645	-10	10	-171	171	-6.2	=171	131	16.4
1,706	1,815	-10	10	-171	171	109	-171	171	25.0
1,705	1,585	-10	10	-171	171	-120	-171	171	16.2
1,706	1,848	-10	10	-171	171	142	-171	171	24.7
1,705	1,755	-10	10	-171	171	50	-171	171	-22.8
1,706	1,606	-10	10	-171	171	-100	-171	171	-23.9
1,716	1,755	-10	10	-172	172	40	-172	132	-9.5
1,705	1,505	-10	10	-171	171	-200	-171	171	-17.0
1,696	1,736	-10	10	-178	170	40	-170	170	-24.5
1,696	1,736	-10	10	-170	170	- 40	-170	170	-0.8
1,706	1,755	-10	10	-171	171	50	-171	171	16.9

Influence Unit: 10 mm

	- Postanania	ir saucester.													
			Influence	Matrix											
Hanger No.	17	18	15	20	21	22	23	24	25	26	27	28	29	30	31
17	74.114	-33.368	-8.405	-1,443	0	0	0	Ð	0	0	0		D	0	0
18	-33.368	87.979	-33.702	-7.534	0	0	Ð	0	0	0	0	0	0	0	0
19	-8.405	-33.702	93.884	-36.821	-7.258	Ð	D.	0	0	0	0	0	P	0	0
20	-1.443	-7.534	-36.821	99.279	-40.348	-6.952	0	0	0	0	0	0	D	0	0
21	0	0	-7.258	-40.348	104,627	-43.999	-6.503	Ð	0	0	0	0	D	0	0
22	0	0	0	-6.952	-43.968	110.046	-47.672	-5.929	0	0	0	0	D	0	0
23	0	0	0	0	-6.503	-47.672	115.444	-51.883	-5.233	0	0	0	0	0	0
24	0	0	0	0	0	-5.929	-51.383	120.773	-55.02	-4.452	0	0	0	0	0
25	0	0	0	0	0	0	-5.233	-55.02	125.891	-53.546	-3.584	.0	0	0	0
26	0	0	0	0	0	Ð	0	-4.452	-58.546	130.735	-61.861	-2.74	D	0	0
27	0	0	0	0	0	0	0	0	-3.584	-61.061	135.1	-84.824	-1.913	0	0
28	0	0	0	Ð	0	0	D	0	0	-2.74	-64.824	138.948	-67.453	-1.164	0
29	0	0	0	0	0	0	0	D	0	0	-1.913	-67.453	142.16	-69.556	0
30	0	0	0	0	0	D	D	0	0	0	0	-1.184	-69.556	344.957	-72,094
31	0	0	0	D	0	D	0	0	0	a	0	0		-72.094	111,638

Hanger Tension Graph Unit: [KN]

INPUT & OUTPUT (1)

Removal

STEP	15	Desc	After Ben		
Adju	sting Shim	Thickness	[mm]		
(+): Shim ins	ertation; (-)	Shim rem	oval	
Hanger No.	Mem.No.	Amount	Min.Shim	Max. Shir	
17	7102	23	-100	100	
18	7103	-10	-100	100	
19	7104	-9	-100	100	
20	7105	-5	-100	100	
21	7106	2	-100	100	
22	7107	-6	-100	100	
23	7108	4	-100	100	
24	7109	-12	-100	100	
25	7110	-9	-100	100	
26	7111	5	-100	100	
27	7112	6	-100	100	
28	7113	16	-100	100	
29	7114	0	-100	100	
30	7115	-6	-100	100	
31	7116	-7	-100	100	

INPUT	(KN)						Unit :[KN]		OUTPUT [KN]
Target			Allow	vances		Error(survey	Error	Final	
Design Vak	Survey	(-) %	(+) %	(-) [KN]	(+)[KN]	-target]	Lower	Upper	Result
1,699	1,507	-10	10	-170	170	-192	-170	170	21.7
1,707	1,855	-10	10	-171	171	148	-171	171	17.0
1,707	1.785	-10	10	-171	171	78	-171	171	25.0
1,707	1.745	-10	10	-171	171	38	-171	171	16.7
1,707	1.645	-10	10	-171	171	-62	-171	171	16.4
1,706	1,815	-10	10	-171	171	109	-171	171	25.0
1,705	1.585	-10	10	-171	171	-120	-171	171	16.2
1,706	1.848	-10	10	-171	171	142	-171	171	24.7
1,705	1,755	-10	10	-171	171	50	-171	171	-22.8
1,706	1,606	-10	10	-171	171	-100	-171	171	-23.9
1,716	1,756	-10	10	-172	172	40	-172	172	-9.5
1,705	1,505	-10	10	-171	171	-200	-171	171	-17.0
1.696	1,736	-10	10	-170	170	40	-170	170	-24.5
1,696	1,736	-10	10	-170	170	40	-170	170	-0.8
1,706	1,756	-10	10	-171	171	50	-171	175	16.9

INPUT & OUTPUT (2)

Shim	n Adjustmen	t Calculatio	n		Influ	ence Unit:	10 1	nm							
1			Influence	Matrix											
Hanger No.	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
17	74.114	-33.368	-8.405	-1,443	0	0	0	0	0	0	0	0	0	0	0
18	-33.368	87.979	-33.702	-7.534	0	0	0	0	0	0	0	0	0	0	Ç
19	-8.405	-33,702	93.884	-36.821	-7.258	0	0	0	0	0	0	0	0	0	0
20	-1.443	-7.534	-36.821	99.279	-40.348	-8.952	0	0	0	0	0	0	0	0	0
21	0	0	-7.258	-40.348	104.627	-43.969	-6.503	0	0	0	0	0	0	0	
22	0	0	0	-6.952	-43.969	110.045	-47.672	-5.929	0	0	0	0	0	0	(
23	0	0	0	0	-6.503	-47.672	115.444	-51.383	-5.233	0	0	0	0	0	(
24	0	0	0	0	0	-5.929	-51.383	120.773	-55.02	-4.452	0	0	0	0	0
25	0	0	0	0	0	0	-5.233	-55.02	125.891	-58.546	-3.584	0	0	0	0
26	0	0	0	0	0	0	0	-4.452	-58.546	130.735	-61.861	-2.74	0	0	(
27	0	0	0	0	0	0	0	0	-3.584	-61.861	135.1	-64.824	-1.913	0	(
28	0	0	0	0	0	0	0	0	0	-2.74	-64.824	138.948	-67.453	-1.164	0
29	0	0	0	0	0	0	0	0	0	0	-1.913	-67.453	142.16	-69.558	0
30	0	0	0	0	0	0	0	0	0	0	0	-1.164	-69.556	144.957	-72.094
31	0	0	0	0	0	0	0	0	0	0	0	0		-72.094	111.638

N.B.) Precise Influence Matrix is necessary

INPUT & OUTPUT (3)

Difference between self-anchored suspension bridges and cable stay bridges

 Hangers of self-anchored suspension bridges can not control erection errors of decks and towers.

Therefore erection of decks and towers should be done carefully.

Conclusions

- Cable tension adjustment is vital for cable suspended bridges.
- Lusail CP3A bridges also needs this system.
- We can realize precise construction by this system.
- Applying this software we can save time and money.

We sincerely hope perfect construction of Lusail CP3A. Then Samsung can receive client's highest evaluation.

Appendix L

Used Basic Theory

OPTIMUM CABLE TENSION ADJUSTMENT USING FUZZY MATHEMATICAL PROGRAMMING

Hitoshi Furuta, Masashiro Kamei, Masakatsu Kaneyoshi, and Hiroshi Tanaka

Second International Symposium on Uncertainty Modeling and Analysis

University of Maryland College Park, Maryland April 25-28, 1993

Sponsored by the IEEE Computer Society Technical Committee on Computer Graphics in cooperation with ACM/SIGGRAPH

SOCIET COMPI

1: Introduction

To determine the optimum cable prestresses in the design of cable-stayed bridges is one of the most important, but time consuming procedure. However, various kinds of errors will be introduced during fabrication or construction (see Fig. 1)¹). Therefore, cable length adjustment is necessary to alter the stress distribution and the geometrical configuration of the bridge at the construction site. The authors have developed a method to overcome these problems with the aid of the fuzzy regression analysis²). Through several applications in the design and construction of actual cable-stayed bridges, it has been proved that the method is not only simple to handle, but also very practical for the design and construction of cable-stayed bridges.

In this paper, an attempt is made to improve the method by introducing the concept of "satisfaction". The degree of satisfaction is defined in such a way that when the aspire of a designer is completely achieved, the satisfaction degree is one, and when the aspire is not achieved at all, the satisfaction degree is zero. Evidently,

2: Concept of satisfaction

The most prominent characteristic of a cable-stayed bridge is the introduction of cable prestresses to change the static equilibrium in order to reduce its weight. However, the optimum state of cable prestresses should be determined from various points of view. As well as the weight reduction, easiness of fabrication and construction should be considered. Moreover, various kinds of errors can not be avoided so that the introduction of engineer's knowledge and experience is desirable to derive a practically feasible solution for the determination of cable prestresses. Based upon engineering judgment of a designer, a certain desirable range is first given for each force of structural member. Especially, experienced engineers may provide appropriate desirable ranges with the most desirable values. This desirable range is interpreted in terms of fuzzy sets defined by membership functions⁴⁾. An example of desirable range is presented in Fig. 2, in which Fc is the most desirable value and the values less than FL and larger than FD are not accepted. Then, the membership grade corresponds to the degree of satisfaction; 1, 0, and 0 are the degrees of satisfaction for Fc, FL, and Fu, respectively. Experienced engineers tend to give an Fc value closer to Fu. In this example, Fu, FL, and Fc are 120 tf, 20 tf, and 100 tf. In this case, it can be said that the designer requires about 100 tf for the prestress of the cable. When 80 tf is obtained as a cable prestress, the degree of satisfaction is calculated as 0.75 from the membership function shown in Fig. 2.

3: Determination of optimum cable prestress using fuzzy mathematical programming

Assuming that the required prestresses are given in terms of fuzzy sets, the problem treated here results in

$$F_{0i} = F_{0i}$$
 (i=1,....,M)(1)

where F_0 is the desirable structural member force specified by a fuzzy set. The wave symbol (i.e., ~) indicates fuzzy quantities. M is the number of member forces. Structural member forces after introducing prestresses, F_0 are calculated as follows:

$$F_0 = F_d + \sum_{j=1}^{N} X_i K_{ji}$$
(2)

where F_d is structural member force due to dead load, X_i is a variable representing cable prestress, and K_{ji} is member force influence coefficient by unit prestress of the cable. N is the number of cables. Fig. 3 shows the flow diagram of structural analysis for cable-stayed bridges.

Paying attention to the j-th member force, the following equation is derived from Eqs. 1 and 2.

$$F_{Lj} - F_{dj} \leq \sum_{j=1}^{N} X_i K_{ji} \leq F_{Uj} - F_{dj}$$
(3)

Using the following transformations

$$F_{Lj} = F_{Lj} - F_{dj} \qquad (4)$$

$$\mathbf{F}_{Uj}' = \mathbf{F}_{Uj} - \mathbf{F}_{dj} \quad \dots \qquad (5)$$

the degrees of satisfaction are expressed as follows, for the left-hand side and right-hand side of the central value of the membership function.

For left-hand side

For right-hand side

.

where D_{Ri} and D_{Li} denote the scatter parameters of right-

hand and left-hand sides, respectively.

Here, two kinds of objective functions are employed:

Objective function 1: $\mu_D(u) = \max \{\min (\mu_{1L}(u), \mu_{1R}(u), \dots, \mu_{mL}(u), \mu_{mR}(u)\}$ (8)

Objective function 2: $\mu_D(u) = \sum_{j=1}^{M} \mu_j(u) \rightarrow \max$ (9)

The above fuzzy mathematical programming problem consisting of Eqs. 7 (constraints) and 8 or 9 (objective function) can be solved by using a linear programming computer package without difficulty. The problem with Eq. 8 as the objective function is referred to Method 1, whereas the problem with Eq. 9 is referred to Method 2.