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ABSTRACT 
Samsung C&T did flutter and gust response analysis and compared these results with 

those of Politecnico di Milano (PDM) and Yokohama National University as the benchmark 
study of Messina Strait Bridge.  

Main results here are as followings; 
●Flutter wind velocity is over 80 m/s and its frequency and logarithmic damping agree well 
to the experimental results of PDM.  
●The flutter mode shape is consisting of multi-modes and asymmetrical.  
●Results of the gust analysis agree well to those of experimental results of PDM by 
applying our modification of Davenport’s coherence formula and the use of measured 
admittances for lift and moment forces. 
 

1. INTRODUCTION 
 
One of the most important key technologies for the construction of the Messina   

Strait Bridge (i.e. the Messina Bridge for abbreviation) is the assessment of aerodynamic 
stability.  Diana (2001) of PDM Group proposed the benchmark study on the Messina 
Bridge during 10th ICWE in 1999. Miyata (2003) of Yokohama National University (YNU) 
firstly replied the proposal presenting flutter analysis by using many models with different 
methods. Their results of the research were summarized as followings: 

● As a structural model, AM1 model gives the closest frequencies and modal  
shapes to those of PDM by eigenvalue analysis. 

● Flutter critical wind speeds of YNU are all lower than that of PDM. 
● Flutter mode shape of AM1 and BM2 models are anti-symmetric and agrees with 
  mode shape of PDM. 
● Wind induced static deflections (i.e. horizontal and torsion) of decks show good  

agreement with those of PDM.  
On  the other hand, Samsung C&T (i.e. Samsung  for abbreviation) has been developing the new 

technologies on aerodynamics for super long span suspended bridges. Our main research target are as 
follows; 
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●Development of flutter analysis 
●Development of gust response analysis (Power Spectrum & Time domain methods) 
●Benchmark study to improve our software    

SAMSUNG did flutter and gust response analysis and compared these results with 
those of PDM and YNU as a benchmark study of Messina Strait Bridge. 

   The purpose of the benchmarking is to contribute the wind engineering and to improve 
our software. 
 

2. ANALYTICAL BACK GROUND  
 

2.1 Structural Model and Dimension 
   The Messina Bridge will connect Sicily with Southern mainland Italy (Fig. 1). 
However the construction of the bridge has been interrupted by the political reason now. 
This gives us the chance to do the benchmarking. After completion, the Messina Bridge will 
surplus the Akashi Kaikyo Bridge in scales (Table 1). 

Fig. 1.  The Messina Straits Bridge (Stretto di Messina S.p.A  2009) 
 

Table 1. Dimensions of the Messina Bridge comparing with the Akashi Kaikyo Bridge 
 

Longest span 3300m (Akashi-Kaikyo 1991m) 

Tower height 382.6m ( 298.3m) 

Deck width 60.4m ( 35.5m) 

Cable diameter 
Design wind speed 

4 x 1.24m (2 x 1.12m) 
75m/s ( 80m/s) 

    FEM model is applied by using beam model for static and dynamic (i.e. flutter and gust 
response) analysis. When we tried to transfer the PDM`s input data to our in-house 
software, we met difficulty in handling data format. YNU kindly supplied their data to us. 
Therefore our model is identical to the AM1 model of YNU as shown in Fig. 2. AM1 model is 
almost equivalent to that of PDM (Miyata 2003). 



-1000 0 1000 2000 3000 4000

0

200

400

Longitudinal

H
e
ig

h
t

-1000

0

1000

2000

3000

4000

-50

0

50

-50

0

50

100

150

200

250

300

350

400

Longitudinal

 
 
 
.  

 
 
 
 

 

 
 
 
 
 

 
 

 
 

 
 

 
 

 
                  Fig. 2  FEM Model of the Messina Bridge 
 
2.2  Deck Section and Dimension (Stretto di Messina S. p. A  2009) 
  The suspended deck section consists of three stream-lined longitudinal boxes; the lateral 
ones for the two road carriageways and the center one for railways as shown in Fig 3. The 
height of the deck is 4.68m (i.e. cross sectional area: A=4.68m2/m). Full width of the deck is 
60.4m however 60m is applied as a cross sectional width: B for flutter analysis (i.e. B = 
60m). Deck and cable weight are 18.1 and 37 t/m respectively. 
   
 
 
 
 
 
 
 

Fig. 3  Cross Section of Deck (Stretto di Messina S.p.A  2009) 
 
 
2.3  Static Aerodynamic Force Coefficients 

 
      The definition of static aerodynamic force coefficients for our computer program is as 



Eq. (1) based upon Japanese code (HSB 2002). The given drag coefficient (CD) data of 
PDM were converted by the use of A (cross section area per unit length [m2/m]) instead of B 
(cross sectional width [m]). 
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where Pi, Li and Mi are respectively drag, lift, and moment aerodynamic force per unit 

length (Fig. 4). ρ is the air density [t・s2/m4], V is the mean wind velocity [m/s], v (t) and w(t) 

are the fluctuating wind velocity [m/s] (See chapter 4). Table 2 shows the digital data at α = 
0 deg. CD ,CL and CM are drag, lift and moment coefficient respectively(Fig. 5). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
   Fig. 4  Definition of Pi, Li and Mi  and Member (i) in Global Coordinate   
 

   Table 2   Static Aerodynamic Force Coefficients (at α = 0 deg.) 

CD 1.164 

dCD/dα 2.086 

CL -0.053 

dCL/dα 0.765 

CM 0.020 

dCM/dα 0.198 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5  Static Aerodynamic Force Coefficients 
 
 
2.4  Flutter Derivatives 

Through inter-net, PDM has been supplying such flutter derivatives as Hi
* and  

Ai
* ( i = 1~4 ) shown in Figs.6 and 7. The definition of the flutter derivative is identical to old 

Scanlan’s convention (Scanlan R.H 1996) with the reduced frequency defined as U/fB where f 
is frequency [Hz] and U is wind velocity [m/s].                                        

The third degree polynomial fitting curves (Figs.6 and 7) was used for the input data to 
flutter analysis.    



Fig.6   Flutter Derivatives Hi* (α=0 deg.) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.7   Flutter Derivatives Ai* (α=0 deg.) 
 



 
2.5  Eigen Mode Analysis  

Main national frequencies of SAMSUNG, YNU(Yamada 2003) and PDM (Diana 1999) 
are compared in Table 3 and mode shapes by SAMSUNG are shown in Fig.8. 

 
Table 3   Major National Frequencies among SAMSUNG, YNU and PDM 

Mode No. 

of  

SAMSUNG 

 

Natural Frequency (Hz) 

SAMSUNG/ 

PDM 
Mode Shape 

SAMSUNG YNU PDM 

1 0.031 0.031 0.033 0.94 Symmetric/lateral 

2 0.059 0.059 0.059 1.00 Asymmetric/lateral  

3 0.063 0.064 0.061 1.03 Asymmetric/vertical 

4 0.078 0.078 0.080 0.98 Symmetric/vertical 

5 0.084 0.084 0.084 1.00 Symmetric/lateral 

6 0.090 0.076 0.081 1.12 Asymmetric/torsional 

10 0.101 0.093 0.097 1.04 Symmetric/torsional 
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 Fig. 8  Main Mode Shapes by Samsung C&T 
 

3. FLUTTER ANALYSIS 
 

Multi-mode flutter analysis was applied to the 3-dimensional frame model of the 
Messina Bridge.  Tanaka and Yamamura (1993) developed the program by using flutter 
derivatives in matrix form. It was used to clarify the characteristics of multi-mode flutter 
which was observed in the wind tunnel tests of the Akashi Kaikyo Bridge.  This program 
is based upon Scanlan (1978). We revised Tanaka (1993) by increasing flutter derivatives 
as we will express in this chapter. 

 
3.1 Dynamic Equation  

Extension of Scanlan’s formulation leads to dynamic equations in matrix form by 
the displacement method. First, the equations of motion of girders are expressed as 
(see Fig.1 for notation), 
 

[𝑀] ∙ {�̈�𝑖(𝑡)} + [𝐶] ∙ {�̇�𝑖(𝑡)} + [𝐾] ∙ {𝑈𝑖(𝑡)} = {𝐹𝑖(𝑡)}                   (2) 

 
where [M] is the mass matrix, [C] is the structural damping matrix, [K] is the 

stiffness matrix, {𝑈𝑖(𝑡)} = {𝑥𝑖(𝑡), 𝑦𝑖(𝑡),  𝑧𝑖(𝑡),  𝛼𝑖(𝑡),  𝛽𝑖(𝑡),  𝜃𝑖(𝑡)} is the displacement 
vector of a member (i), and {𝐹𝑖(𝑡)} is the wind load vector(=self-excited force). The 

displacement vector, {𝑈𝑖(𝑡)} is expressed by eigen-mode functions {∅𝑖(𝑡)} and 
generalized coordinates Xm (t), where m=1, 2,… M.  M is the number of modes, as 
follows: 
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∅𝑖𝑚 = (∅𝑘𝑚 + ∅𝑙𝑚)/2 (Mode shape at the center of i - th member)     (3) 
 

Pre-multiplying Eq. (2) by {∅𝑖𝑚}
𝑇, it becomes 

 

  �̈�𝑚(𝑡) + 2ℎ𝑚
𝑠 ∙ 𝜔𝑚 ∙ �̇�𝑚(𝑡) + ωm

2 ∙ 𝑋𝑚(𝑡) = {∅𝑖𝑚}
𝑇 ∙ 𝐹𝑖(𝑡) 𝑀𝑚

∗⁄  

  𝑀𝑚
∗ = {∅𝑖𝑚}

𝑇 ∙ [𝑀] ∙  {∅𝑖𝑚}                       (4) 
 

where ℎ𝑚
𝑠  and 𝜔𝑚 are, respectively, the structural damping ratio in still air and 

circular frequency [rad/s] of the m-th mode. Under the assumption that the girder is 
regarded as horizontal and the wind acts on bridge laterally at right angle, the 

components of wind vector {𝐹𝑖(𝑡)} in Eq.(4) can be expressed as  
  {𝐹𝑖(𝑡)} = {0,  𝐿𝑖(𝑡),  𝑃𝑖(𝑡),𝑀𝑖(𝑡), 0, 0}                             (5) 
 

  𝑃𝑖(𝑡) = (𝜌 ∙ 𝑉𝑖
2/2) ∙ 𝐴𝑖 ∙ 𝐾𝑖 ∙ [𝑃0𝑖

∗ , 𝑃1𝑖
∗ ,  𝑃2𝑖

∗ ,  𝑃3𝑖
∗ ,  𝑃4𝑖

∗ , 𝑃5𝑖
∗ ] 

     ∙ {�̇�𝑖(𝑡)/𝑉𝑖, �̇�𝑖(𝑡)/𝑉𝑖, 𝐵𝑖 ∙ �̇�𝑖(𝑡)/𝑉𝑖, 𝐾𝑖 ∙ 𝛼𝑖(𝑡), 𝐾𝑖 ∙ 𝑦𝑖(𝑡)/𝐵𝑖 , 𝐾𝑖 ∙ 𝑧𝑖(𝑡)/𝐵𝑖} ∙ 𝐿𝑖  

  𝐿𝑖(𝑡) = (𝜌 ∙ 𝑉𝑖
2/2) ∙ 𝐵𝑖 ∙ 𝐾𝑖 ∙ [𝐻0𝑖

∗ ,  𝐻1𝑖
∗ ,  𝐻2𝑖

∗ ,  𝐻3𝑖
∗ ,  𝐻4𝑖

∗ ,  𝐻5𝑖
∗ ] 

     ∙ {�̇�𝑖(𝑡)/𝑉𝑖, �̇�𝑖(𝑡)/𝑉𝑖, 𝐵𝑖 ∙ �̇�𝑖(𝑡)/𝑉𝑖, 𝐾𝑖 ∙ 𝛼𝑖(𝑡), 𝐾𝑖 ∙ 𝑦𝑖(𝑡)/𝐵𝑖 , 𝐾𝑖 ∙ 𝑧𝑖(𝑡)/𝐵𝑖} ∙ 𝐿𝑖      (6) 

  𝑀𝑖(𝑡) = (𝜌 ∙ 𝑉𝑖
2/2) ∙ Bi

2 ∙ 𝐾𝑖 ∙ [𝐴0𝑖
∗ ,  𝐴1𝑖

∗ ,  𝐴2𝑖
∗ ,  𝐴3𝑖

∗ ,  𝐴4𝑖
∗ ,  𝐴5𝑖

∗ ] 

      ∙ {�̇�𝑖(𝑡)/𝑉𝑖, �̇�𝑖(𝑡)/𝑉𝑖, 𝐵𝑖 ∙ �̇�𝑖(𝑡)/𝑉𝑖, 𝐾𝑖 ∙ 𝛼𝑖(𝑡), 𝐾𝑖 ∙ 𝑦𝑖(𝑡)/𝐵𝑖 , 𝐾𝑖 ∙ 𝑧𝑖(𝑡)/𝐵𝑖} ∙ 𝐿𝑖 

𝐾𝑖 = 𝐵𝑖 ∙ 𝜔/𝑉𝑖 ≒ 𝐵𝑖 ∙ 𝜔𝑅/𝑉𝑖: the reduced flutter frequency [see Eq.(17)] 
 

  𝑃0𝑖
∗ = −(𝑑𝐶𝐷/𝑑𝛼)/𝐾𝑖 = −CDi

′ /𝐾𝑖, 𝑃1𝑖
∗ = −2𝐶𝐷𝑖/𝐾𝑖,   𝑃2𝑖

∗ ≒ 0 

  𝑃3𝑖
∗ = (𝑑𝐶𝐷𝑖/𝑑𝛼)/𝐾𝑖

2 = CDi
′ /𝐾𝑖

2,     𝑃4𝑖
∗ = 0 

  𝑃5𝑖
∗ (𝐾𝑖) = 𝐻5𝑖

∗ (𝐾𝑖) = 𝐴5𝑖
∗ (𝐾𝑖) = 0                                    (7)                      

    𝐻0𝑖
∗ = −2𝐶𝐿𝑖/𝐾𝑖,    𝐴0𝑖

∗ = −2𝐶𝑀𝑖/𝐾𝑖 

     

where Pi(t), Li(t), Mi(t) are, respectively, the drag force, lift force and moment. ρ is 

the air density [t・s2/m4], Vi is the wind velocity [m/s], Ai is the area(per unit span) 

subjected to wind [m2/m], Bi is the lateral girder width[m], Li is the member length[m], CDi 
is the drag coefficient defined for Ai, ω is the flutter circular frequency [rad/s], 

𝑃𝑗𝑖
∗(𝐾𝑖) ∙  𝐻𝑗𝑖

∗ (𝐾𝑖) ∙  𝐴𝑗𝑖
∗ (𝐾𝑖)  are dimensionless flutter derivatives of i-th member. All 

derivatives are double of those given by Scanlan (1978) and  𝐻2𝑖
∗ (𝐾𝑖) ∙  𝐻3𝑖

∗ (𝐾𝑖) ∙  𝐴1𝑖
∗ (𝐾𝑖) 

have opposite sign due to upward y-axis adopted here. 
Note that the flutter derivatives of Eq.(7) are used in this paper. The eigen-mode 

function {∅𝑖𝑚} is defined as follows: 

{∅𝑖𝑚} = {∅𝑖𝑚
𝑥 , ∅𝑖𝑚

𝑦
,  ∅𝑖𝑚

𝑧 ,  ∅𝑖𝑚
𝛼 ,  ∅𝑖𝑚

𝛽
,  ∅𝑖𝑚

𝜃 }                           (8) 

The self-excitation terms for girders are derived by inserting Eqs.(3),(5),(6) and (8) into 
Eq.(4): 

           



{∅𝑖𝑚}
𝑇 ∙ {𝐹𝑖(𝑡)} 𝑀𝑚

∗⁄ = [{∅𝑖𝑚
𝑧 }𝑇 ∙ {𝑃𝑖(𝑡)} + {∅𝑖𝑚

𝑦
}
𝑇
∙ {𝐿𝑖(𝑡)} + {∅𝑖𝑚

𝛼 }𝑇 ∙ {𝑀𝑖(𝑡)}] /𝑀𝑚
∗     (9) 
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For main cables of suspension bridges, only the 𝑃1𝑖
∗ (𝐾𝑖) and 𝐻1𝑖

∗ (𝐾𝑖) terms in 

Eqs.(10)-(12) are necessary , and for 𝐻1𝑖
∗ (𝐾𝑖)  the quasi-steady formula may be 

applied, yielding: 
 

𝐻1𝑖
∗ (𝐾𝑖) = −𝐶𝐷𝑖 𝐾𝑖⁄ = −(1/2𝜋) ∙ 𝐶𝐷𝑖 ∙ 𝑉𝑖/(𝑓 ∙ 𝐵𝑖)                    (13) 

 
where f is the flutter frequency [Hz] and Bi is the diameter of the cable [m]. For the 

tower members, only the 𝑃1𝑖
∗  term in Eqs.(10)-(12) are necessary and Li in Eqs. 

(10)-(12) should refer to the vertical length of the members. The hanger member area 
subjected to the wind pressure should be included in the main cable and the girder area, 
weighted by the ratio of the drag coefficient of hanger to main cable or girder, 
respectively. 
     Then, a set of coupled flutter equation is obtained by inserting Eqs. (10)-(12) into 
Eq.(4). 

 

  �̈�𝑚(𝑡) + 2ℎ𝑚
𝑠 ∙ (𝜔𝑚 𝜔⁄ ) ∙ 𝜔 ∙ �̇�𝑚(𝑡) + 𝜔𝑚

2 ∙ 𝑋𝑚(𝑡) 
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  [𝐻] = [

𝐻1𝑖
∗ (𝐾𝑖) ∙ 𝐵𝑖 𝐻0𝑖
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3

]                (16) 

 
3.2 COMPLEX EIGENVALUE EQUATIONS 
The complex generalized coordinates Xm(t), associated with complex flutter circular 

frequency ω, are introduced as follows: 

 

𝑋𝑚(𝑡) = 𝑋𝑚0 ∙ 𝑒
𝑖𝜔𝑡, 𝑋𝑚0 = 𝑋𝑚0

𝑅 + 𝑖 ∙ 𝑋𝑚0
𝐼  

𝜔 = 𝜔𝑅 + 𝑖 ∙ 𝜔𝐼 = (1 + 𝑖 ∙ ℎ) ∙ 𝜔𝑅                                    (17) 
 

[(𝑋𝑚0
𝑅 )2 + (𝑋𝑚0

𝐼 )2]1/2: the amplitude of the m-th mode (= |𝑋𝑚0|) 
𝜃𝑚 = 𝑡𝑎𝑛−1(𝑋𝑚0

𝐼 /𝑋𝑚0
𝑅 ): the phase – shift of the m-th mode (rad)         (18) 

 

where ωR is the flutter circular frequency[rad/s] and h=ωI/ωR(=𝛿/2𝜋) is the sum of 

structural and aerodynamic damping.  
The complex eigenvalue equations, derived from inserting Xm(t) of Eq.(17) into Eq.(14) 
are as follows. 
 

([Gmn] − [λ]) ∙ {Xm0} 

=

[
 
 
 
 
G11 − λ G12⋯ G1m
G21 G22 − λ G2m
∙ ∙ ∙

       ∙               ∙       ∙
Gm1 Gm2⋯ Gmm − λ]

 
 
 
 

∙

{
 
 

 
 
X10
X20
∙
∙

Xm0}
 
 

 
 

= 0                            (19) 

 

𝐺𝑚𝑚 = [𝐹𝑚𝑚 + 1 + 𝑖 ∙ {𝐸𝑚𝑚 − 2ℎ𝑚
𝑠 ∙ (𝜔𝑚 𝜔⁄ )}]/𝜔𝑚

2  

𝐺𝑚𝑛 = [(𝐹𝑚𝑛 + 𝑖 ∙ 𝐸𝑚𝑚)/𝜔𝑚
2 (𝑚 ≠ 𝑛)]                                (20) 

[𝜆] = Diag[1 𝜔2⁄ ](Diag.matrix) 
 
For a set of eigen-vectors {Xm0} to have solution: 
 

𝑑𝑒𝑡([𝐺𝑚𝑛] − [𝜆]) = 𝑑𝑒𝑡[𝐺𝑚𝑛] −𝐷𝑖𝑎𝑔 [1/𝜔
2] = 0                       (21) 

 
Eq.(21) contains the complex unknown ω, then arbitrary initial values (e.g., 

ωm/ω=1) may be given (the choice of ωm  is briefed below) and ω and { Xm0} can be 
determined with iterative calculations of Eqs.(20) and (21). The following convergence 
criterion is appropriate with ε- value of 10-3~10-4 (k: number of iterations). 
 

|𝜔𝑘 −𝜔𝑘−1|/|𝜔𝑘| < 휀                                             (22) 

 



Once ω is determined, logarithmic damping 𝛿 = 2𝜋 ∙ 𝜔𝐼/𝜔𝑅 may be plotted against 
wind velocity 𝑉 = 𝐵 ∙ 𝜔𝑅/𝐾0 for a typical member, where K0 is an arbitrarily given 
reduced frequency.  

3.3 2-DOF Coupled Flutter  
   Section model wind tunnel tests consist of only vertical and torsional motions. Therefore 

the eigen-mode function {φim } is reduced to the following form; 

 

         {∅𝑖𝑚} = {0, ∅𝑖𝑚
𝑦
, 0,  ∅𝑖𝑚

𝛼 , 0,0}                                (23) 

 
   Only H*

ji (Ki) and A*
ji (Ki) were used for 2-DOF flutter analysis. Vibrational data is 

summarized in Table 4 and flutter velocity is 96.5m/s (Fig. 9). Generally speaking the flutter 
velocity of 2-DOF is safety side evaluation; because the motions of cables and towers are 
neglected therefore total damping becomes small.  
 

Table 4     Vibration Characteristics of 2-DOF Model 

Notation Unit Value 

B Bridge Deck Width m 60 

A Projection Area per Unit Length m 4.68 

fh Natural Frequency of Vertical Motion Hz 0.0634 

fθ Natural Frequency of Torsional Motion Hz 0.0895 

m Mass per Unit length t/m 60.2 

I Inertia Mass per Unit Length tm2/m 32,421 

δh Structural Damping of Vertical Motion 

－ 0.0628 (h = 1%) δθ Structural Damping of Torsional 

Motion 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.9    V – δ Curve of 2D-analysis 

 
 
 



 
3.4  3-Dimensional Flutter Analysis  
Input 

3-Dimensional multi-flutter analysis was carried out by using input data in Table 5. 
Two cases were executed as follows. 

●Case 1 ……Torsional key mode is asymmetric first 

●Case 2 ……Torsional key mode is symmetric first 

  First twenty modes are used for coupling except for torsional key mode. 
 

Table 5  Outlines of Input Data of 3D Flutter Analysis 

Cross Section 

① Bridge Deck 

B = 60m, A = 4.68m 

② Cable 

D (Outer diameter)= 12m, B = 2.4m (2 times of outer diameter) 

③ Tower of Upstream and Downstream side 

B = 12m, D = 20m 

Static 

Aerodynamic 

Force 

① Bridge Deck : Experimental data at α=0deg. 

② Cable : CD = 0.7(by HSB(2002)) 

③ Hanger Cable : No consideration 

④ Tower : CD = 1.8 (by HSB(2002)) 

Flutter 

Derivatives 

① Bridge Deck  

 

Motion 

Sway Vertical Rotational 

Vel. Disp. Vel. Disp. Vel. Disp. 

Force 

Drag Q(𝑃1
∗) - Q(𝑃0

∗) - Q(𝑃3
∗) - 

Lift Q(𝐻0
∗) - M(𝐻1

∗) M(𝐻4
∗) M(𝐻2

∗) M(𝐻3
∗) 

Moment Q(𝐻0
∗) - M(𝐴1

∗) M(𝐴4
∗) M(𝐴2

∗) M(𝐴3
∗) 

Remarks) Q：quasi steady theory,  

M : measured data by forced vibration method 

② Cable 

𝐻1
∗ was calculated by quasi steady theory. 

Structural 

Damping 

Lateral：logarithmic decrement δ = 0.0251 (i.e. h = 0.4%) 

Vertical and Torsional: logarithmic decrement δ = 0.0628 (h = 1%) 

 Air Density 0.12 (kg･s2/m4) 

 



Output 

 

(a) V –δ  Flutter Frequency Curves 

 

(b) V – δ Curves 

Fig.10  Results of 3D Flutter Analysis 

Results 
Case 1 gives lower flutter velocity therefore key torsion mode is asymmetric. 

Flutter velocity is almost 100m/s which fulfill the design wind velocity 75m/s.  
Our method shows good agreement with frequency curve and damping change of 
experiments (Fig.10). The flutter mode is asymmetric(Fig.11). As the flutter mode, 
asymmetric mode is not so many. The side span decks are very short and uncommon then 
this may happen. The reason might be controversy.  As concerning to the estimation of 
flutter velocity, Samsung is upper bound; DPM is median and YNU is lower bound. This 
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result is mainly due to the difference of asymmetric torsion frequencies (NB: mode No.6 in 
Table 3). 

 

Fig.11   Flutter Mode by Samsung C&T 

4. GUST RESPONSE ANALYSIS 
    

4.1 Outline of gust response analysis 
Davenport (1962) made a notable first contribution to the buffeting problem. Scanlan 

(1978) extended it, employing a set of flutter derivatives. Based upon these theories, 
Tanaka and Yamamura (1988) made the formulation of the gust response for a flexible 
multi-degree-of-freedom (MDF) system. In this paper, some extensions were achieved to 

Tanaka and Yamamura (1988) by adding following flutter derivatives terms (e.g., 
  𝑃4𝑖

∗ , 𝑃5𝑖
∗ ,  𝐻4𝑖

∗ ,  𝐻5𝑖
∗  , 𝐴4𝑖

∗ ,  𝐴5𝑖
∗ ).  

The gust (i.e. buffeting) response equations of motion are derived by inserting Eqs. 
(9)~(12) into Eq.(4) and modifying the damping ratio and circular frequency: 

 
�̈�𝑚(𝑡) + 2ℎ̃𝑚 ∙ �̃�𝑚 ∙ �̇�𝑚(𝑡) + �̃�𝑚

2 ∙ 𝑋𝑚(𝑡) = {∅𝑖𝑚}
𝑇 ∙ {𝐹𝑖𝑚

𝐵 (𝑡)} 𝑀𝑚
∗⁄          (24) 

 

�̃�𝑚 = 𝜔𝑚 ∙ [1 + iim

z

im

y

im
i

T

im

z

im

y

imim LBM   },,{]
~

[},,{)2/( *   ]
−1/2

  

                                                   
(25)   

[
~
] = [

𝐻4𝑖
∗ (�̃�𝑖) ∙ 𝐵𝑖 𝐻5𝑖

∗ (�̃�𝑖) ∙ 𝐵𝑖 𝐻3𝑖
∗ (�̃�𝑖) ∙ 𝐵𝑖

2

𝑃4𝑖
∗ (�̃�𝑖) ∙ 𝐴𝑖 𝑃5𝑖

∗ (�̃�𝑖) ∙ 𝐴𝑖 𝑃3𝑖
∗ (�̃�𝑖) ∙ 𝐴𝑖 ∙ 𝐵𝑖

𝐴4𝑖
∗ (�̃�𝑖) ∙ 𝐵𝑖

2 𝐴5𝑖
∗ (�̃�𝑖) ∙ 𝐵𝑖

2 𝐴3𝑖
∗ (�̃�𝑖) ∙ 𝐵𝑖

3

] 

 

ℎ̃𝑚 = ℎ𝑚
𝑠 ∙ (𝜔𝑚 �̃�𝑚⁄ ) − iim

z

im

y

im
i

T

im

z

im

y

imim LHBM   },,{]
~

[},,{)2/( *  
 

                                                              

[H
~
] = [

𝐻1𝑖
∗ (�̃�𝑖) ∙ 𝐵𝑖 𝐻0𝑖

∗ (�̃�𝑖) ∙ 𝐵𝑖 𝐻2𝑖
∗ (�̃�𝑖) ∙ 𝐵𝑖

2

𝑃0𝑖
∗ (�̃�𝑖) ∙ 𝐴𝑖 𝑃1𝑖

∗ (�̃�𝑖) ∙ 𝐴𝑖 𝑃2𝑖
∗ (�̃�𝑖) ∙ 𝐴𝑖 ∙ 𝐵𝑖

𝐴1𝑖
∗ (�̃�𝑖) ∙ 𝐵𝑖

2 𝐴0𝑖
∗ (�̃�𝑖) ∙ 𝐵𝑖

2 𝐴2𝑖
∗ (�̃�𝑖) ∙ 𝐵𝑖

3

]           (26) 

  
where �̃�𝑚 and ℎ̃𝑚

 are, respectively, the equivalent circular frequency 

and equivalent damping ratio in the wind. {𝐹𝑖𝑚
𝐵 (𝑡)} is the buffeting force of 

the m-th mode. Eq.(25) is implicit function of  �̃�𝑚, therefore, an iterative calculation is 

necessary to obtain �̃�𝑚. 
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Original Davenport formula
for horizontal wind gust
Coh(f) = exp[-7f⊿Ｙ／U]

 A structure becomes unstable if the equivalent damping ratio ℎ̃𝑚 (Eqs.(26)) becomes 

negative. The equations above apply to the stiffening girder. For other 
members, simplification is possible. For example, only 𝑃1𝑖

∗  and 𝐻1𝑖
∗  are necessary for 

cables and only 𝑃1𝑖
∗  for tower members.  

    In addition, the special correlations function (i.e., coherence) by Davenport (1962): 

𝐶𝑜ℎ(𝑓) = 𝑒𝑥𝑝[−𝑘𝑓⊿𝑌／𝑈] is modified to the following expression (Hatanaka (1995)); 

𝐶𝑜ℎ(𝑓) = 𝑒𝑥𝑝[−𝑘(𝑓 + 𝑓0)⊿𝑌／𝑈]                            (27) 

Where k is decay factor, f is frequency and f0 is frequency-shift parameter to fit 
experimental data as shown Fig.12. The number of f0=0.22 and f0=0.44 are applied 
respectively for horizontal and vertical wind gust components. The purpose of modification 
is to avoid overestimation of gust response which we will refer later. 
  Space limitations prohibit a detailed presentation of our gust response method. Frame 
work of the method is almost same as the reference (Tanaka 1988).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 

 
 
 
 

Fig.12  Span-Wise Coherence of Horizontal Wind Gust  

   (Original and Modified Davenport formula, ⊿Y=12.5m) 

 
4.2  Application to the Messina Bridge 

Input data 
- Power Spectral Density (PSD) 

Fitting curves were used instead of the measured PSD in boundary layer turbulent flow 



shown In Fig. 13 (Red curves). 
- Static aerodynamic coefficients (Fig.5 and Table 2 and 5) 
- Flutter derivatives (Figs.6 and 7) and Eq. (7) 
- Aerodynamic admittance: Drag; Davenport Formula, 

 Lift and Moment; Experimental data (Fig. 14)  

- Power law of vertical wind profile α= 0.11 and wind velocity is 60m/s at  

the bridge deck height of the mid span 
- Maximum peak factor: Davenport (1964) ( T= 600 sec ) 
- Structural damping (Table 5) 
- Number of summed modes: 50 

 

 

 

 

 

 

 

 

 

 

 

(a)  Horizontal Component         (b) Vertical Component 
          Fig. 13  Power Spectrum Density given by PDM 

 

Results of our gust response analysis are compared with those of PDM and wind tunnel 

experimental data by DMI (Diana 1999) in Table 6.  

   First we tried the gust response analysis applying Davenport’ coherence and compared 

the results with those of PDM and experiment. Then we found our results are almost same 

as those of PDM as you see in Table 5 (e.g., discrepancy: 12~16% on RMS). However the 

RMS of lateral displacement shows very large error (i.e. 6.46).  

This tendency was already known by the analyses of the AKASHI KAIKYO Bridge and the 

KURUSHIMA 2nd Bridge (Toriumi (1997)). To overcome the discrepancy, modified 

Davenport formula (i.e. Eq. (27)) was derived by Hatanaka (1995). By the use of Eq. (24), 

the discrepancy became much smaller as shown in Table 6. We must be very careful to 

apply Davenport’s coherence for applying long span bridges. Davenport formula discards 

the effect of turbulence scale. When bridge span (e.g., typically more than about 1000m) 

becomes long and the bridge’s national frequencies become small, his coherence will 

become overestimation (Irwin H.P.A.H 1977).  

Fig.14 shows the experimental admittance (symbol:■) and Sears’ functions of lift and 

moment forces. The discrepancy around main modes is large. Then we used the 

experimental values. Satisfactory results are obtained as shown in Table 6.  
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        Fig. 14  Comparison between Sears Function and Experiments 
 
                Table 6   Results of Gust Response Analysis 

  

Gust Response Analysis Experiment 

(③) 

Error 

SAMSUNG(①) PDM(②) ①/② ①/③ 

Lateral at 

 mid span (m) 

Mean 9.91 9.49 8.36 1.04 1.19 

RMS 0.55 (1.81) – 0.28 – 1.96(6.46) 

Max 11.42 (14.78) – – – – 

Vertical at 

 mid span (m) 

Mean -0.38 – – – – 

RMS 0.20 (0.44) – 0.26 – 0.77(0.59) 

Max -1.01(-1.69) – – – – 

Vertical at 

 quarter 

span(m) 

Mean -0.30  – – – – 

RMS 0.21 (0.50) 0.43 0.29 0.49(1.16) 1.39(1.51) 

Max -0.94 (-1.79) – – – – 

Rotational at  

mid span (deg.) 

Mean 0.64 0.52 0.40  0.81 1.60  

RMS 0.19 (0.29) 0.26 0.17 1.37(1.12) 1.12(1.71) 

Max 1.24 (1.53) – – – – 

  
NB. The values in () are the results by Davenport's coherence 

 

 

 



5. CONCLUSION 

This paper describes flutter and gust response analyses using 3D frame model of the 

Messina Strait Bridge for the benchmark study. The results of the paper are summarized as 

follows: 

(1) Eigen Mode Analysis 

The eigen-frequency by our analysis agreed to the original results by PDM within about 

10% error. It is interesting that the lowest frequency modes of vertical and torsional motions 

are both asymmetric. 

(2) Flutter Analysis 

The flutter onset velocity of 2D and 3D frame model are respectively 95.1 and 102.3 m/s. 

The analysis results on flutter frequency and logarithmic damping agree well to the 

experimental results. The flutter mode was asymmetrical mode shape.  

(3) Gust Response Analysis 

To improve gust response analysis, Davenport formula was modified to fit the experimental 

data of the spatial correlation. Also, the experimental data of the aerodynamic admittance 

functions for lift and moment forces were used instead of Sears’ function. By these methods, 

the RMS of our analysis and experimental result became satisfactory close. However our 

approximation of PSD is somewhat larger in low frequency range. Best fitting method of 

PSD may be future challenge.   

We hope that this paper will contribute to the bench making assessment for the Messina 

Bridge.  

Finally we express sincere appreciations to YNU for the receipt of the 3D-frame model 

data.    
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