Aug 3, 2010, Samsung Corporation

Gusty wind disaster on engineering structures and transient characteristics of aerodynamic forces

H. Shirato, K. Maeta, Y. Kato, Y. Takasugi and O. Sasaki

Dept. of Civil and Earth Resources Engineering/ Adv. Res. Inst. of Fluid Science and Engineering, Kyoto University

Extreme winds (Tornadoes, downburst, gust front)

http://www.weatherstock.com/tornadocat3.html

Extreme winds (Tornadoes, downburst, gust front)

Extreme winds (Tornadoes, downburst, gust front)

- 18.66 annually (leads to disaster)
- Up to F3 (less than 90 m/s) (JMA statistics)
- 1.4 annually per 10⁴ km² (comparable with in Alabama and Missouri) (Niino et al., 1997)
- 8 tornaodes annually may cross railway tracks anywhere in Japan (Tamura, 2007)
- Wind loads, flying debris
- Safety level for high hazardous facilities, mass-, high-speed transports
- Hard to be predicted

Winds induced by tornado passage

- Velocity increase in short time duration
 - \rightarrow like a step function

$$U(t) = U_0 \cdot 1(t) + U_{init}$$

Drag/Lift forces overshoot

- Sarpkaya (1966) drag, circular, vortex pair
- Taneda (1972) lift, elliptic, vortex
- Shiraishi, Matsumoto (1982) lift, rectangular, train overturn
- Nomura (2000) drag, square, inertia force
- Matsumoto, et al. (2007) drag, vortex
- Takeuchi, Maeda (2008) drag, railway wagon, overshoot coefficient

The wind tunnel for generating gusty winds

1.8 B/D=5, rectangular 1.6 I) L 1 1.4 1 Drag force н н 1.2 Т I. 1 L U(t)Drag force peak occurs before U(t) reaches to steady-0.6 state level 0.4 D/Dec U/Uac U(LPF,/U. 0.2 4170 4180 4190 4200 4210 4220 4230 4250 4240 $\tau[tU/D]$

U

Drag force

B

D

Drag force by load cells

Drag force by load cells

Drag force by load cells

Drag force

B

D

U

Static pressures in wind tunnel

Wind tunnel

• The drag force peak looks to be *uncorrelated* to both peaks of the surface pressure and the static pressure.

Net surface pressures

1.5

U

Where does the peak come from?

- Independent of each pressure transient properties
- Not caused by static pressure
- Simply due to the time difference between both pressure reaching to the steady level. The rear surface pressure tends to remain more negative value

because of :

• Caused by the formation of the circulation pair in wake, partly.

Inertia force

$$F_D = \frac{\rho V_o C_m}{\frac{dU}{dt}} + \frac{1}{2} \rho U^2 C_D A$$

- Perfect fluid
- Static pressure difference along streamwise direction
- Body configuration

Drag force (calculated)

Drag force (observed)

- Drag force taking the inertia force into account may explain the observed phenomenon in some cases.
- But not in all cases.

B/D=1, square

Transient Lift force

Measured by load cell

 $\alpha = 10^{\circ}$

U

Lift

Pressures on upper and lower surfaces

Flow pattern at the lift peak

Conclusion

- The overshoot of drag force was observed typically for a rectangular cylinder with more slender cross section.
- The drag force overshoot is explained partially by the time difference between both pressure reaching to the steady level.
- The inertia force due to streamwise pressure gradient can contribute to the overshoot of drag force.

Conclusion (cont'd)

 The overshoot of lift force on a slightly inclined square cylinder is due to the temporal formation of the separation bubble on the upper surface.